FATHAN, PANGESTU and Andri, Andri (2020) IMPLEMENTASI DATA MINING UNTUK MENENTUKAN POLA PENYEBAB KECELAKAAN LALU LINTAS DI WILAYAH KOTA PALEMBANG MENGGUNAKAN ALGORITMA FP-GROWTH. Diploma thesis, Universitas Bina Darma.
Text
BAB 0.pdf Download (790kB) |
|
Text
BAB I.pdf Download (73kB) |
|
Text
DAFTAR PUSTAKA.pdf Download (31kB) |
Abstract
Kota Palembang merupakan salah satu kota besar yang berada di Indonesia. Seiring dengan meningkatnya jumlah penduduk dan meningkatnya jumlah kendaraan bermotor tentunya akan berdampak pada angka kecelakaan lalu lintas di wilayah Kota Palembang yang semakin tinggi. Pada penelitian ini penulis akan menentukan pola penyebab kecelakaan lalu lintas dengan menggunakan algoritma fp-growth dan menggunakan berbagai variabel. Variabel yang akan digunakan terdiri dari cuaca, waktu kejadian,bentuk geometri jalan, profesi, tingkat luka. Penelitian ini diharapkan dapat menjadi acuan kepolisian untuk dapat melakukan tindakan antisipasi agar terjadi penurunan angka kecelakaan lalu lintas di wilayah Kota Palembang. Algoritma fp-growth dapat diterapkan dengan baik untuk menentukan pola penyebab kecelakaan lalu lintas di wilayah kota Palembang dengan menggunakan 2 minimum support sebesar 40% dan 50% serta 2 minimum confidence sebesar 70% dan 90%. Berdasarkan rules yang dihasilkan didapatkan rules dengan nilai confidence tertinggi sebesar 98 % dengan rules :Ketika kecelakaan terjadi dengan tipe kecelakaan Samping – Samping maka kecelakaan terjadi di kondisi cuaca Cerah.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Association rules, fp-growth, kecelakaan lalu lintas, data mining |
Subjects: | Z Bibliography. Library Science. Information Resources > Z665 Library Science. Information Science |
Divisions: | Faculty of Engineering, Science and Mathematics > School of Electronics and Computer Science |
Depositing User: | Mrs Octaviana T |
Date Deposited: | 03 Aug 2021 02:19 |
Last Modified: | 03 Aug 2021 02:19 |
URI: | http://repository.binadarma.ac.id/id/eprint/1852 |
Actions (login required)
View Item |