ST

Journa of Inteligent System and Computation M. Fikri, et al.: Application of The Bounding Box... (Oktober 2024)

Application of The Bounding Box Method
For OKU Timur Character Image
Segmentation

M. Fikril, llman Zuhri Yadi'", Yesi Novaria Kunang?! , Leon Andretti Abdillah®23
YIntelligent Systems Research Group, FakultasSainsTeknologi, Universitas Bina Darma, Palembang, Indonesia
2Research Fellow, INTI International University, Nilai, Malaysia

3Research Fellow, Chung Hua University, Hsinchu City, Taiwan

Corresponding author: liman Zuhri Yadi (e-mail:ilmanzuhriyadi@binadarma.ac.id).

ABSTRACT Ogan Komering Ulu (OKU) Timur is a region rich in cultural heritage, including historical
relics such as traditional houses, traditional clothing, handicrafts, and traditional dances, as well as Ulu
script. One of the important intangible cultural heritages from this area is the presence of ancient script
artifacts, such as the Pallava script known as AksaraUlu or SuratUlu, recognized in the variant of Ulu script
from OKU Timur, which reflects the development of civilization and writing systems of the past. This
research aims to segment images of the OKU Timur script-using the Bounding Box method. The
segmentation process is carried out using the Python programming language and the Google Colaboratory
platform. The segmentation of this image is very important in the effort to preserve and digitize cultural
heritage in the modern era. The methods used in this research include data collection from artifacts in OKU
Timur, processing images into binary format, and character separation using Bounding Box. The results of
this study are an effective segmentation of the characters of the OKU Timur script, which can serve as a
foundation for creating a dataset used for image classification.

KEYWORDS OKUTimur Character; Bounding Box; Image Segmentation

I. INTRODUCTION

OganKomeringUIu (OKU) East possesses a rich cultural
heritage, particularly in relation to its historical artifacts and
local traditions. OKU East is a region abundant in cultural
legacy, including traditional houses, handicrafts, and dances
passed down through generations. The region is also home
to invaluable cultural relics, such as ancient inscriptions,
that hold significant historical value. Various inscriptions

modern technology, such as image segmentation, can play a
crucial role.

Image segmentation refers to the process of separating an
object from its background, allowing the object to undergo
further processing[2]. This research utilizes the Bounding
Box method, a widely used data labeling annotation
technique in computer vision. The method involves

and manuscripts written in Pallawa script and Ulu script
have been discovered in this area, serving as critical
evidence of the development of past civilizations and
writing systems.

The visual symbol system known as script or writing
system is used to express the expressive elements of
language by inscribing them onto mediums such as paper,
stone, wood, fabric, etc[1]. The Oku East script is a
traditional writing system originating from the Oku East
region in South Sumatra, Indonesia. This script holds
distinct uniqueness and beauty, reflecting the cultural
identity and historical legacy of the local community. In an
effort to preserve this cultural heritage in the digital era,

VOLUMEO6, No02, 2024 DOI:XXXXXXXXXX

drawing rectangular boxes to locate target objects, enabling
each character to be identified and separated from other
elements within the image. The aim of this study is to
segment the characters in the Oku East script. Therefore,
this research is titled "Application Of The Bounding Box
Method For OKU Timur Character Image Segmentation”.

Il. LITERATURE REVIEW
A. THEORETICAL FRAMEWORK

1) SEGMENTATION

Segmentation is a crucial aspect of image analysis, as it
involves analyzing the desired image for further processes,
such as pattern recognition[3].

Y]

Journal of Intelligent System and Computation

M. Fikri, et al.: Application of The Bounding Box... (Oktober 2024)

2) IMAGE SEGMENTATION

Segmentation enables each object in an image to be
isolated, allowing them to be used as input for other
processes[4]. For example, segmentation is employed in
human face recognition to distinguish the face from the
background or other body parts, producing an image of the
face to be identified. It is also used in object recognition to
differentiate each object from the background, ensuring that
the background is not processed during the recognition
phase. Similar to the letter recognition process in text,
segmentation is also required to identify the letters to be
recognized.

3) BOUNDING BOX

The bounding process involves separating objects from
one another and computing their features to-identify each
object. A bounding box is typically rectangular and is
defined by the coordinates of the top-left corner (x_min,
y_min) and the bottom-right corner (x_max, y_max), or by
the center, width, and height. In a dilated image, the
bounding process is used to separate row block objects.
This process performs object segmentation by separating
one object from another based on pixel connectivity in the
dilated image. Subsequently, the bounding process
computes object features to label individual objects within
the row block. Objects are marked with red boxes, using the
computed width and height dimensions derived from the
labeling process[5].

4) DILATION

Dilation is a process aimed at thickening the white points
on objects being detected, thereby making them more
readily identifiable by computers[6].

Dilation is a morphological image processing method
related to the shape of object structures. Specifically,
dilation involves adding pixels to the boundaries of objects
in a digital image. In other words, dilation is the process of
expanding the boundaries of objects by adding pixels,
resulting in an increase in the size of the image after the
dilation operation is performed[7].

5) MORPHOLOGICAL OPERATIONS

Morphological image processing refers to a crucial
technique in image processing that alters the shape and
structure of objects within the original image[8].
Morphological operations are employed to make shapes
(structures) more recognizable. This type of image
processing is typically performed by applying a structural
element to the image in a manner similar to convolution.
The structural element (SE) is a fundamental component for
morphological operations[9].

Ill. RESEARCH METHODOLOGY

In this research on the segmentation of Oku East script
images, the researcher employs the Bounding Box method.

VOLUMEO6, No02, 2024 DOI:XXXXXXXXXX

The Bounding Box method is utilized to mark objects that
have been grouped during object segmentation. The objects
are marked using green boxes. The following are the
methodological steps that can be used:

1. Data Collection

2. Row Segmentation

3. Character Segmentation using Bounding Box

4,

Save Image

{ Data Collecion }
h 4

{ Row Segmentation }

k4

Character Segmentation
using Bounding Box

End
Figure 1. Flowchart

The methodological steps employed in
segmentation are carried out as follows:

image

A. DATA COLLECTION

The initial stage of this research involves data collection
from script artifacts in the Oku East region, which are then
processed by researchers involved in the ISRG project
titled "Development of a Mobile-Based Ulu Script
Transliteration Application for the OKU East Variant."
The Oku East script is converted into a questionnaire for
processing during the Image Preprocessing stage, which
has been carried out by another team within the ISRG
project. The questionnaire consists of 102 respondents,
with each questionnaire containing 225 Oku East script
characters. Below is an example of a page from the
respondent's questionnaire.

ST

Journal of Intelligent System and Computation

M. Fikri, et al.: Application of The Bounding Box... (Oktober 2024)

A (o nna i in o
wliwlivibeliwibe/beilewiklielle

Figure 2.Sample Questionnaire of OKU East Script

B. ROW SEGMENTATION

After completing the Image Preprocessing stage, the
resulting binary images facilitate the identification and
extraction of text rows, as each text row can now be
recognized as a cluster of isolated black pixels against a
white background. By applying techniques such as
connected component analysis or horizontal line detection,
text rows can be effectively extracted for further
processing. The objective of row segmentation s to
determine the number of character rows present in the
image and to identify the area of each character row. This is
done to exclude unnecessary components from subsequent
processing stages[10].

C. CHARACTER SEGMENTATION USING BOUNDING
BOX

After successfully segmenting the text rows, the next
step is to separate each character within those rows. This
process typically begins with the detection of spaces
between words, which appear as wider horizontal gaps
between clusters of black pixels. Image processing
algorithms then place bounding boxes around each
detected character. These bounding boxes are rectangular
shapes that encompass each character, identifying the top,
bottom, left, and right coordinates of the character. By
using bounding boxes, each character can be extracted as a
distinct entity.

The Bounding Box process involves marking row blocks
with boxes, which allows for the identification of
individual objects. The following describes the testing of
the dilation processing stage:

1. The Bounding Box process marks row blocks in the
dilated image.

2. Therow blocks are treated as individual objects within
the dilated image[5].

IV. RESULTS AND DISCUSSION

A. DATA COLLECTION

The initial stage of this research involves the data
collection process from script artifacts located in the OKU
East region. The collected data is then processed by

VOLUMEO6, No02, 2024 DOI:XXXXXXXXXX

researchers involved in the ISRG research team for the
study titled "Development of a Mobile-Based
Transliteration Application for the Ulu Script Variant of
OKU East." In this research, a questionnaire is carefully
designed to encompass various character variations of the
OKU East script. Each questionnaire contains 225
characters of the OKU East script, which will then be
distributed to respondents for completion.

Subsequently, the collected Oku East script is processed
and converted into a questionnaire. This questionnaire will
be used in the Image Preprocessing stage. Below is an
example of a page from the completed questionnaire,
which has been processed during the Image Preprocessing
stage.

nams (OMOA FAHMILIA /221410033 /Si4C

b JaRRA s AR s MR R iR R R AR

Figure 3.Questionnaire Page
B. ROW SEGMENTATION

1) DISPLAYING EAST OKU SCRIPT IMAGES
Fungsi untuk m
def

riksa apakah file berada di Google Drive

/* in file_path

Path ke gambar

image_path = '/content/drive/MyDrive/dataset fiks - Copy/3/e3.jpg'
Cek apakah file berasal
if not is_from_driv

raise valuet

Membaca dan mengonversi gamb
img = cv2.imread(image_path)
img = cv2.cviCelor(img, cv2.COLOR_BGR2RGB)

Menyesuaikan ke
alpha = 1.2

beta = 15 # Kecera

img = cv2.convertScaleAbs(img, alpha=alpha, beta=beta

Menampilkan gambar
plt.imshow{img)
plt.axis(‘off’)
plt.show(

Figure 4. Code For Displaying Images

The images processed in this stage are sourced from the
previous step, specifically the Image Preprocessing stage,
and are uploaded to Google Drive for processing in the

Y]

Journal of Intelligent System and Computation

M. Fikri, et al.: Application of The Bounding Box... (Oktober 2024)

segmentation stage. The code provided is designed to
process and display images stored in Google Drive, first
verifying the origin of the file. The initial step in the code is
to check if the image file is located in Google Drive by
searching for the string '/content/drive/' in the file path. If
the image is not from this location, the code will terminate
the process and provide an error message. Once verification
is successful, the image is read using OpenCV, which by
default reads images in BGR (Blue-Green-Red) color
format. To be compatible with Matplotlib, the image is then
converted to RGB (Red-Green-Blue) color format, which is
more commonly used for visualization.

The next step in the code involves adjusting the contrast
and brightness of the image. These adjustments are
controlled through the variables alpha for contrast and beta
for brightness. The alpha value governs the level of
contrast, where a value of 1.0 maintains the original
contrast, while higher values enhance the contrast of the
image. Meanwhile, beta regulates the brightness, with
higher values making the image appear brighter. These
adjustments are applied to the image using the
“cv2.convertScaleAbs()” function. After adjusting the
contrast and brightness, the image is displayed using
Matplotlib with the display axes hidden to focus solely on
the image. Thus, this code enables users to read, verify,
adjust, and display images from Google Drive with easy
control over contrast and brightness.

2) DILATION ROW SEGMENTATION
Dilasi untuk segmentasi baris
kernel = np.ones((3e,78), np.uint8)
dilated = cv2.dilate(binary, kernel, iteratiocns = 1)
1t.imshow{dilated, cmap='gray')

Figure 5. Code Dilation Row Segmentation

After successfully displaying the image, it is processed in
the dilation stage. The code applies dilation to the binary
image, which is a technique in image processing used to
expand the area of bright objects in the image. Initially, a
kernel or structuring element of size 30x70 pixels is created
using “np.ones’, where each element has a value of 1. This
kernel functions as a "stamp" used in the dilation process.
Subsequently, the “cv2.dilate” function is applied to the
binary image (‘binary’) with the kernel, and dilation is
performed once (as specified by iterations = 1°). This
dilation makes the bright objects in the image thicker or
larger, which is useful for connecting separated elements,
such as text rows in document segmentation.

» CV2.RETR_EXTERNAL, Cv2.CHAIN_APPROX_NONE
a ctr : cv2.boundingRect(ctr)[1]) # (X, ¥, w, h

Figure 6.Code Finding Contours
The code above is used to find and sort contours in an

image that has undergone dilation. First, the

VOLUMEO6, No02, 2024 DOI:XXXXXXXXXX

“cv2.findContours™ function is employed to detect contours
in the segmented image (which has previously undergone
dilation). This function returns two values: “contours’,
which contains a list of all detected contours, and
“hierarchy’, which provides information about the
hierarchical relationships among the contours. The
parameter "cv2.RETR_EXTERNAL" ensures that only the
outermost contours are retrieved, while
“cv2.CHAIN_APPROX_NONE" retains all points in the
contours without approximation.

After the contours are detected, the code sorts them based
on their vertical position (y-coordinate) using the “sorted”
function. This sorting process is crucial in applications such
as text line segmentation, where the order of contours
determines the sequence of lines. The function
“cv2.boundingRect(ctr)” is used to obtain the coordinates
and dimensions of the bounding box for each contour, and
“key = lambda ctr: cv2.boundingRect(ctr)[1]" ensures that
the sorting is based on the y-value, which represents the
vertical position of the contours in the image.

4) SAVING AND DISPLAYING THE RESULTS OF ROW
SEGMENTATION IMAGES

Gambar bounding box pada, kontur
fop ctr in sorted_contours lines:
X, ¥, W, h = cv2.boundingrect(ctr)
cv2.rectangle(img2, (X, V), (x + w, ¥ + h), (40, 100, 250), 2)

Menyimpan gambar hasil seg
output_path_lines = 'segment

if not cv2.imwritefcutput_path_

raise I0Efror(f"r to save e {output_path_lines}")

olor{img2, cv2.COLOR_BGR2RGB))
si Garis dengan Bounding Box')

Figure 7.Code For Saving And Displaying Image Results

This code is designed to draw bounding boxes around
each contour that has been previously sorted and then save
and display the resulting image. First, the code iterates
through each contour sorted by wvertical position
("sorted_contours_lines"). For each contour, the coordinates
of the top-left corner ('x, y°), as well as the width (w’) and
height ("h") of the bounding box, are calculated using
“cv2.boundingRect(ctr)”. The bounding box is then drawn
on the original image ('img2’) using “cv2.rectangle’, with
the box color specified by the RGB value (40, 100, 250)
and a line thickness of 2 pixels.

After all bounding boxes have been drawn, the resulting
image is saved to a file named segmentasi_baris.jpg using
cv2.imwrite. If the saving process fails, the program will
generate an error message. Finally, the image with
bounding boxes is displayed using Matplotlib (plt.imshow),
and the image is converted from the BGR color format
(used by OpenCV) to the RGB format for proper display.
Below is the result of the row segmentation stage.

ST

Journal of Intelligent System and Computation

M. Fikri, et al.: Application of The Bounding Box... (Oktober 2024)

ICaCarsrsriiririrsrararil
A dArdramarvdr-arElv; uw |
(oo w

S

o & cg’7§7"gg:£g17 3

I GG A A A AN

S

Figure 8. Results Of The Row Segmentation Stage

C. CHARACTER SEGMENTATION USING BOUNDING
BOX

1) DILATION CHARACTER SEGMENTATION
Dilasi untuk karakter
kernel = np.ones((8,8), np.uintg)
dilated2 = cv2.dilate(binary, kernel, iteraticns =1)
plt.imshow{dilated2, cmap="'gra)

Figure 9. Code Dilation Character Segmentation

After successfully processing the row segmentation
stage, the next step is to perform dilation on the characters
in the image. This code applies dilation to the image to
expand the character areas. First, a kernel of size 8x8 pixels
is created using ‘np.ones’, where each kernel element has a
value of 1. This kernel is used in the dilation process, where
the “cv2.dilate” function enlarges the white areas (bright
objects) in the binary image ("binary’). The dilation process
is performed once, as specified by iterations = 1°. The
result of this dilation is an image with thicker characters
and more prominent white areas, which can aid in
connecting separated parts of characters or improving the
visibility of characters in the image.

2) FUNCTION TO MERGE TWO BOUNDING BOX

Fungsi untuk menggabungkan dua bounding box
xes{boxl, box2):

x1 = min(box1[@], box2[e])
y1l = min(box1[1], box2[1])
x2 = max{boxi[e] + box1[2], box2[e] + box2[2])

y2 = max(box1[1] + box1[23], box2[1] + box2[3])
urn (x1, y1, x2 - x1, y2 - y1)

Figure 10. Code To Merge Two Bounding Boxes

This code defines a function named “merge_boxes™ that
is used to combine two bounding boxes into a single, larger
box that encompasses both of the original boxes. The
function accepts two bounding boxes as input, each
represented by a tuple “(X, y, w, h)", where "x" and "y are
the coordinates of the top-left corner, and "w™ and "h™ are
the width and height of the box.

VOLUMEO6, No02, 2024 DOI:XXXXXXXXXX

To merge two bounding boxes, the function first
determines the coordinates of the top-left corner of the
combined box by taking the minimum values of "x" and "y
from the two boxes. Next, it determines the coordinates of
the bottom-right corner of the combined box by taking the
maximum values of "x + w™ and 'y + h™ from both boxes.
Finally, the function returns the merged bounding box in
the form “(x1, y1, width, height)’, where "x1" and "y1" are
the coordinates of the top-left corner, and “width® and
“height™ represent the width and height of the combined
box.

3) MORPHOLOGICAL OPERATIONS

Gunakan o gan yang lebih besar
kernel = cv
morphed = cv2.

g
.MORPH_CLOSE, kernel, iterations=3)

#{Temukan kontur dalam gambar biner yang telah dimorfologi
contours,, = cv2.findContours(morphed, cv2.RETR_EXTERNAL, Cv2.CHAIN_APPROX_SIMPLE)

Figure 11. Code Morphological Operations

This code employs morphological operations to merge
small contours with larger ones in a binary image. First, a
square-shaped kernel of size 8x8 pixels is created using
“cv2.getStructuringElement’. This kernel is used in the
morphological operation with the method
"cv2.MORPH_CLOSE’, which combines adjacent white
areas (bright objects) by closing small gaps between them.
This process is performed three times (iterations=3") to
ensure that small contours near larger contours are merged,
resulting in larger, more cohesive contours.

After the morphological operation is completed, the
contours in the modified image (‘morphed’) are detected
using “cv2.findContours'. The function
"cv2.RETR_EXTERNAL" ensures that only the outer
contours are retrieved, while
"cv2.CHAIN_APPROX_SIMPLE" is used to simplify the
contours by reducing the number of points that make up
each contour. The result is a list of larger contours that are
combinations of previously separate small contours.

4) CONTOUR FILTERING ON THE IMAGE

Batas minimum area kontur

filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area]

Mendapatkan bounding box untuk kontur yang telah difilter
bounding_boxes = [cv2.boundingRect(centour) for contour in filtered_contours]

Figure 12.Code Contour Filtering On The Image

This code is designed to filter out small contours in the
image, retaining only the larger contours. Initially, a
minimum contour area threshold is set with
‘min_contour_area = 27, meaning only contours with an
area greater than 2 pixels will be preserved. Subsequently,
contour filtering is performed by creating a new list,
“filtered_contours’, which includes only those contours
whose area exceeds this threshold. This filtering is
accomplished using list ~ comprehension, with

>

Journal of Intelligent System and Computation

M. Fikri, et al.: Application of The Bounding Box... (Oktober 2024)

“cv2.contourArea(cnt)” employed to calculate the area of
each contour.

After the smaller contours are removed, bounding boxes
for each of the remaining contours are computed and stored
in the list “bounding_boxes’. These bounding boxes are
calculated using “cv2.boundingRect(contour)’, which
provides the coordinates of the top-left corner, width, and
height of the bounding box surrounding each filtered
contour. As a result, this code prepares the data for the next
stage, where only the relevant and sufficiently large
contours will be further processed.

5) DETERMINING THE DISTANCE FOR MERGING
BOUNDING BOXES AND MARGIN

simum untuk menggabungkan bounding box
s

max_
merged_boxe:

hile bounding_boxes:
box = bounding_boxes.pop(8)
to_merge = [box]

for cthe bcx in bounding.
if (abs(box[e] - o
to_merge. 2ppen
bounding_boxes. remov <(other "_box)

<= max_distance and abs(box[1] - other._box[1]) <= max_distance):

if len(to_merge) > 1:
merged_box = to_me
for other_box in t

merged_box = me merged_box, other_box
merged boxes.append("e ged_box)

else

NEV‘ged boxes.append (box

Margin untuk bounding boxes
margin = 15

Figure 13.Code To Determine Distance And Margin

This code is designed to merge bounding boxes that are
close to each other into a single, larger box. First, the
maximum allowed distance for merging bounding boxes is
set with “max_distance = 50°. The code then processes each
bounding box individually using a “while™ loop. For each
bounding box, the code searches for other bounding boxes
whose distance from the current bounding box does not
exceed “max_distance” in both horizontal and vertical
directions. All bounding boxes meeting this distance
criterion are collected in the list ‘to_merge’, and the merged
bounding boxes are removed from the list
“bounding_boxes’.

If there is more than one bounding box in the “to_merge
list, they are merged into a single larger bounding box using
the “merge_boxes™ function, and the result is stored in
“merged_boxes™. If there is only one bounding box in
“to_merge’, it is directly added to “merged_boxes’.
Additionally, the code sets an extra margin with a value of
‘margin = 15" to provide spacing around the merged
bounding box. This ensures that the combined box covers a
sufficiently broad area around it.

6) SAVING AND DISPLAYING THE RESULTING IMAGE

VOLUMEO6, No02, 2024 DOI:XXXXXXXXXX

y - margin), (x + w + margin, y + h + margin), (@, 255, 8), 2

ngan bounding box

output_path}")

Bounding Box'

Figure 14. Code Saving And Displaying The Resulting Image

This code is used to draw the merged bounding boxes on
the original image, and then save and display the result.
First, the code draws each bounding box listed in
"merged_boxes™ on the original image ('img’). For each
bounding box, the coordinates and dimensions (', y, w, h’)
are extracted, and the bounding box is drawn around it with
an added margin on each side. This margin, set to ‘margin =
157, ensures that the bounding box encompasses a
surrounding area around the merged bounding boxes.

After all the bounding boxes have been drawn, the image
with the bounding boxes is saved to a file named
“segmentasi_karakter.jpg” using “cv2.imwrite’. If the image
saving process fails, the code will output an error message.
Finally, the resulting image with bounding boxes is
displayed using Matplotlib. The displayed image is
converted from BGR to RGB format to ensure correct
visualization and is titled "Character Detection Results for
OKU East Script with Bounding Boxes" to provide context
for the visual results. Below is the image from the character
segmentation stage.

U] (/L/Woml/l~ ,(/(/ Ul
(/uuuu/uuuh/u/uuw‘

=

FU/U/U/U/U/U/(J/(}/(/U/U’U,/

u(/LvO/O/LyU/(/yw(yw

Figure 15. Image Result From The Character Segmentation Stage

Once the image has been successfully saved, the next
steps involve cropping and clustering. Subsequently, the
dataset created will be trained using a deep learning model,
enabling it to classify images in the future.

V. CONCLUSION

A. CONCLUSION

Based on the research conducted, a total of 1,020 images
were processed. These images were obtained from
completed and scanned questionnaires using a scanning
device. Subsequently, the images were processed during the
image preprocessing stage to enhance their quality before

6

Y]

Journal of Intelligent System and Computation

M. Fikri, et al.: Application of The Bounding Box... (Oktober 2024)

undergoing image segmentation. This study employed the
Bounding Box method to process the OganKomeringUlu
(OKU) East script images obtained from the preprocessing
stage prior to entering the image segmentation process. This
method effectively assists in separating characters within
the respondent’s page images. By utilizing the Bounding
Box method, the segmented characters in the images can be
efficiently processed in the subsequent stages, namely
cropping and clustering.

B. SUGGESTION

Here are some suggestions to improve the segmentation
process: It is recommended to find additional code that
allows for batch input of images into the process. Currently,
images must be input one at a time, which is time-
consuming when dealing with a large number of images.
Implementing batch processing would significantly reduce
the time required for image input.

AUTHORS CONTRIBUTION

M. Fikri:Conceptualization, Methodology, Validation,
Investigation, Data Curation, Original Draft Preparation,
Visualization;

llman Zuhri Yadi:Conceptualization, Methodology,
Validation, Formal Analysis, Investigation, Data Curation,
Original Draft Preparation, Review and Editing,
Visualization, Supervision, Project Administration.

Yesi Novaria Kunang:Conceptualization, methodology,
validation, formal analysis, investigation, data curation,
original draft preparation, review and editing, visualization,
supervision, and project administration.

Leon Andretti Abdillah:Conceptualization, methodology,
validation, formal analysis, investigation, data curation,
original draft preparation, review and editing, visualization,
supervision, and project administration.

COPYRIGHT

@ This work is licensed under a Creative
A Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

REFERENCES

[1] P. A. Setiyawan, A. A. K. A.C. W,and |. P. A,
Bayupati, “Balinese Alphabet Sebagai Aplikasi
Media Pembelajaran Aksara Bali Berbasis Android
Mobile Platform,” Merpati, vol. 2, no. 2, pp. 226—
237, 2014.

[2] R. Adipranata, J. Siwalankerto, and S. Telp,
“Kombinasi Metode Morphological Gradient Dan
Transformasi Watershed Pada Proses Segmentasi
Citra Digital,” J. Inform. Petra, no. 031, 2014.

[3] Z. Y. Malik Gumiwang, A. Haikal Nugqqy Zahhar,
and H. Maulana, “Perbandingan Segmentasi Citra

VOLUMEO6, No02, 2024 DOI:XXXXXXXXXX

[4]

(5]

(6]

[7]

(8]

(9]

[10]

Menggunakan Algoritma K-Means Dan Algoritma
Fuzzy C-Means,” J. Manaj. Inform. Jayakarta, vol.
3, no. 1, pp. 21-26, 2023, [Online]. Available:
http://journal.stmikjayakarta.ac.id/index.php/JMIJa
yakarta

N. L. Kartika Sari, P. Hartoyo, and A. Ajrun,
“Analisis Karakteristik Segmen Pada Citra
Mamaografi Dengan Menggunakan Metode
Segmentasi Watershed,” J. Pembelajaran Fis., vol.
11, no. 2, p. 59, 2022, doi:
10.19184/jpf.v11i2.31643.

F. Maedjaja and Efraim, “Sistem deteksi teks pada
cover buku dengan pendekatan karakter teks,”
Infact Ukrim, vol. 6, no. 2, 2021.

R. Riandini and D. Kuncoro, “Estimasi Panjang
Antrean Kendaraan pada Persimpangan Jalan Raya
dengan Sensor Kamera Menggunakan Metode
Queue Length Estimation,” J. Comput. Eng.
Network, Intell. Multimed., vol. 1, no. 1, pp. 14-20,
2023, doi: 10.59378/jcenim.v1il.4.

V. M. Sutama, I. R. Magdalena, and I. Wijayanto,
“Identifikasi Objek Dominan Citra Digital
Menggunakan Metode Markov Random Field
(mrf),” eProceedings Eng., vol. 5, no. 3, pp. 4859-
4865, 2018, [Online]. Available:
https://openlibrarypublications.telkomuniversity.ac.
id/index.php/engineering/article/view/7839

M. D. Hamanrora, Y. N. Kunang, I. Z. Yadi, and
Mahmud, “Image segmentation of Komering script
using bounding box,” Indones. J. Electr. Eng.
Comput. Sci., vol. 35, no. 3, pp. 1565-1578, 2024,
doi: 10.11591/ijeecs.v35.i3.pp1565-1578.

I. Boyke Nainggolan, I. Rita Magdalena, and R.
Yunendah Nur Fu, “Matched Filter Dan Operasi
Morfologi Untuk Estimasi Derajat Kebengkokan
Tulang Matched Filters and Morphological
Operations for Estimating Design of Bone Grass,”
vol. 5, no. 3, p. 5108, 2018.

A. Septiarini, K. Kunci, and P. Proyeksi,
“Segmentasi Karakter Menggunakan Profil
Proyeksi,” J. Inform. Mulawarman Ed. Juli, vol. 7,
no. 2, pp. 66-69, 2012.

https://creativecommons.org/licenses/by-nc-sa/4.0/

SURAT PERNYATAAN

saya yang bertanda tangan di bawah in;:

Nama * M. Fikri

Nim 1201401012

program Studi : Sistem Informas;i

fakultas * Sains Teknologi

No. WA 1 083172653818

Nama Pembimbing - llman Zuhri Yadi, M.M., M.Kom
Judul Artikel

: : Application Of The Bounding Box Method For OKU Timur Character Image
Segmentation

Menyatakan memang benar belum mendapatkan Letter<of Acceptance (LoA) dan masih tahap
submit/menunggu proses review dari pihak penerbit jurnal. Mengingat pendaftaran wisuda sedang
berlangsung, untuk itu saya mohon dapat diizinkan” mendaftar wisuda walaupun belum
mendapatkan LoA, dengan konsekuensi tidak mendapatkan Transkrip Akademik saya. Saya secara
sadar tidak akan menuntut Transkrip Akademik saya sebelum saya mendapatkan LoA dan

mengumpulkan ke Pusat Pelayanan Mahasiswa (PPM).

Demikian surat pernyataan ini saya buat dengan sebenarnya untuk dipergunakan sebagaimana

mestinya. Terima kasih.

Mengetahui Palembang, September 2024
Ketua Program Studi % AR
5.&\ " \

[

,12,

0] " o EAb N,, A \
‘;:I\L\ 8302350 we
Nita Rosa Damayanti., M.Kom., Ph.D. HFVIREY N

Limpiran:
Bukti submit artikel

INSYST: Journal of Intelligent System and Computation Tasks o Q English ® View Site

INSYST —=r=r=—

Submissions

INSYST —r=rermee—

Submissiol

Submit an Article

1. Start 2. Upload Submission 3. Enter Metadata 4. Confirmation 5. Next S

Submission complete
Thank you for your interest in publishing with INSYST: Journal of Intelligent System and Computation

What Happens Next?

The journal has been notified of your submission, and you've been emailed a confirmation for your records. Once

editor has reviewed the submission, they will contact you

For now, you can

INSYST: Journal of Intelligent System and Computation Tasks o @ English ® View Site

400 / M.Fikri / Application of The Bounding Box Method For OKU Timdr Character Image Segmentation Library

Workflow Publication

Submission Review Copyediting Production
Submission Files Q search
> @ 20021 mifikri, Jurnal INSYST Vol Oktober 2024 - Application ofiThe A T

'19.docx

nding Box - M Fikri 21

Download All Files

Pre-Review Discussions Add discussion

& mifikrl

& miikri

	4a9509d8dd5a4da2720cea40c1c6f17d1d5cc661e5f9f5335db84d479e01d6fe.pdf
	Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000
	1) DISPLAYING EAST OKU SCRIPT IMAGES
	2) DILATION ROW SEGMENTATION
	3) FINDING CONTOURS IN THE IMAGE
	4) SAVING AND DISPLAYING THE RESULTS OF ROW SEGMENTATION IMAGES
	1) DILATION CHARACTER SEGMENTATION

	4a9509d8dd5a4da2720cea40c1c6f17d1d5cc661e5f9f5335db84d479e01d6fe.pdf

