
 M. Fikri, et al.: Application of The Bounding Box… (Oktober 2024)

VOLUME06, No02, 2024 DOI:XXXXXXXXXX 1

Application of The Bounding Box Method
For OKU Timur Character Image
Segmentation

M. Fikri1, Ilman Zuhri Yadi1*, Yesi Novaria Kunang1 , Leon Andretti Abdillah1,2,3
1Intelligent Systems Research Group, FakultasSainsTeknologi, Universitas Bina Darma, Palembang, Indonesia
2Research Fellow, INTI International University, Nilai, Malaysia
3Research Fellow, Chung Hua University, Hsinchu City, Taiwan

Corresponding author: Ilman Zuhri Yadi (e-mail:ilmanzuhriyadi@binadarma.ac.id).

ABSTRACT Ogan Komering Ulu (OKU) Timur is a region rich in cultural heritage, including historical

relics such as traditional houses, traditional clothing, handicrafts, and traditional dances, as well as Ulu

script. One of the important intangible cultural heritages from this area is the presence of ancient script

artifacts, such as the Pallava script known as AksaraUlu or SuratUlu, recognized in the variant of Ulu script

from OKU Timur, which reflects the development of civilization and writing systems of the past. This

research aims to segment images of the OKU Timur script using the Bounding Box method. The

segmentation process is carried out using the Python programming language and the Google Colaboratory

platform. The segmentation of this image is very important in the effort to preserve and digitize cultural

heritage in the modern era. The methods used in this research include data collection from artifacts in OKU

Timur, processing images into binary format, and character separation using Bounding Box. The results of

this study are an effective segmentation of the characters of the OKU Timur script, which can serve as a

foundation for creating a dataset used for image classification.

KEYWORDS OKUTimur Character; Bounding Box; Image Segmentation

I. INTRODUCTION

OganKomeringUlu (OKU) East possesses a rich cultural

heritage, particularly in relation to its historical artifacts and

local traditions. OKU East is a region abundant in cultural

legacy, including traditional houses, handicrafts, and dances

passed down through generations. The region is also home

to invaluable cultural relics, such as ancient inscriptions,

that hold significant historical value. Various inscriptions

and manuscripts written in Pallawa script and Ulu script

have been discovered in this area, serving as critical

evidence of the development of past civilizations and

writing systems.

The visual symbol system known as script or writing

system is used to express the expressive elements of

language by inscribing them onto mediums such as paper,

stone, wood, fabric, etc[1]. The Oku East script is a

traditional writing system originating from the Oku East

region in South Sumatra, Indonesia. This script holds

distinct uniqueness and beauty, reflecting the cultural

identity and historical legacy of the local community. In an

effort to preserve this cultural heritage in the digital era,

modern technology, such as image segmentation, can play a

crucial role.

Image segmentation refers to the process of separating an

object from its background, allowing the object to undergo

further processing[2]. This research utilizes the Bounding

Box method, a widely used data labeling annotation

technique in computer vision. The method involves

drawing rectangular boxes to locate target objects, enabling

each character to be identified and separated from other

elements within the image. The aim of this study is to

segment the characters in the Oku East script. Therefore,

this research is titled "Application Of The Bounding Box

Method For OKU Timur Character Image Segmentation".

II. LITERATURE REVIEW

A. THEORETICAL FRAMEWORK

1) SEGMENTATION

Segmentation is a crucial aspect of image analysis, as it

involves analyzing the desired image for further processes,

such as pattern recognition[3].

 M. Fikri, et al.: Application of The Bounding Box… (Oktober 2024)

VOLUME06, No02, 2024 DOI:XXXXXXXXXX 2

2) IMAGE SEGMENTATION

Segmentation enables each object in an image to be

isolated, allowing them to be used as input for other

processes[4]. For example, segmentation is employed in

human face recognition to distinguish the face from the

background or other body parts, producing an image of the

face to be identified. It is also used in object recognition to

differentiate each object from the background, ensuring that

the background is not processed during the recognition

phase. Similar to the letter recognition process in text,

segmentation is also required to identify the letters to be

recognized.

3) BOUNDING BOX

The bounding process involves separating objects from

one another and computing their features to identify each

object. A bounding box is typically rectangular and is

defined by the coordinates of the top-left corner (x_min,

y_min) and the bottom-right corner (x_max, y_max), or by

the center, width, and height. In a dilated image, the

bounding process is used to separate row block objects.

This process performs object segmentation by separating

one object from another based on pixel connectivity in the

dilated image. Subsequently, the bounding process

computes object features to label individual objects within

the row block. Objects are marked with red boxes, using the

computed width and height dimensions derived from the

labeling process[5].

4) DILATION

Dilation is a process aimed at thickening the white points

on objects being detected, thereby making them more

readily identifiable by computers[6].

Dilation is a morphological image processing method

related to the shape of object structures. Specifically,

dilation involves adding pixels to the boundaries of objects

in a digital image. In other words, dilation is the process of

expanding the boundaries of objects by adding pixels,

resulting in an increase in the size of the image after the

dilation operation is performed[7].

5) MORPHOLOGICAL OPERATIONS

Morphological image processing refers to a crucial

technique in image processing that alters the shape and

structure of objects within the original image[8].

Morphological operations are employed to make shapes

(structures) more recognizable. This type of image

processing is typically performed by applying a structural

element to the image in a manner similar to convolution.

The structural element (SE) is a fundamental component for

morphological operations[9].

III. RESEARCH METHODOLOGY

In this research on the segmentation of Oku East script

images, the researcher employs the Bounding Box method.

The Bounding Box method is utilized to mark objects that

have been grouped during object segmentation. The objects

are marked using green boxes. The following are the

methodological steps that can be used:

1. Data Collection

2. Row Segmentation

3. Character Segmentation using Bounding Box

4. Save Image

Figure 1. Flowchart

The methodological steps employed in image

segmentation are carried out as follows:

A. DATA COLLECTION

The initial stage of this research involves data collection

from script artifacts in the Oku East region, which are then

processed by researchers involved in the ISRG project

titled "Development of a Mobile-Based Ulu Script

Transliteration Application for the OKU East Variant."

The Oku East script is converted into a questionnaire for

processing during the Image Preprocessing stage, which

has been carried out by another team within the ISRG

project. The questionnaire consists of 102 respondents,

with each questionnaire containing 225 Oku East script

characters. Below is an example of a page from the

respondent's questionnaire.

 M. Fikri, et al.: Application of The Bounding Box… (Oktober 2024)

VOLUME06, No02, 2024 DOI:XXXXXXXXXX 3

Figure 2.Sample Questionnaire of OKU East Script

B. ROW SEGMENTATION

After completing the Image Preprocessing stage, the

resulting binary images facilitate the identification and

extraction of text rows, as each text row can now be

recognized as a cluster of isolated black pixels against a

white background. By applying techniques such as

connected component analysis or horizontal line detection,

text rows can be effectively extracted for further

processing. The objective of row segmentation is to

determine the number of character rows present in the

image and to identify the area of each character row. This is

done to exclude unnecessary components from subsequent

processing stages[10].

C. CHARACTER SEGMENTATION USING BOUNDING
BOX

After successfully segmenting the text rows, the next

step is to separate each character within those rows. This

process typically begins with the detection of spaces

between words, which appear as wider horizontal gaps

between clusters of black pixels. Image processing

algorithms then place bounding boxes around each

detected character. These bounding boxes are rectangular

shapes that encompass each character, identifying the top,

bottom, left, and right coordinates of the character. By

using bounding boxes, each character can be extracted as a

distinct entity.

The Bounding Box process involves marking row blocks

with boxes, which allows for the identification of

individual objects. The following describes the testing of

the dilation processing stage:

1. The Bounding Box process marks row blocks in the

dilated image.

2. The row blocks are treated as individual objects within

the dilated image[5].

IV. RESULTS AND DISCUSSION

A. DATA COLLECTION

The initial stage of this research involves the data

collection process from script artifacts located in the OKU

East region. The collected data is then processed by

researchers involved in the ISRG research team for the

study titled "Development of a Mobile-Based

Transliteration Application for the Ulu Script Variant of

OKU East." In this research, a questionnaire is carefully

designed to encompass various character variations of the

OKU East script. Each questionnaire contains 225

characters of the OKU East script, which will then be

distributed to respondents for completion.

Subsequently, the collected Oku East script is processed

and converted into a questionnaire. This questionnaire will

be used in the Image Preprocessing stage. Below is an

example of a page from the completed questionnaire,

which has been processed during the Image Preprocessing

stage.

Figure 3.Questionnaire Page

B. ROW SEGMENTATION

1) DISPLAYING EAST OKU SCRIPT IMAGES

Figure 4. Code For Displaying Images

The images processed in this stage are sourced from the

previous step, specifically the Image Preprocessing stage,

and are uploaded to Google Drive for processing in the

 M. Fikri, et al.: Application of The Bounding Box… (Oktober 2024)

VOLUME06, No02, 2024 DOI:XXXXXXXXXX 4

segmentation stage. The code provided is designed to

process and display images stored in Google Drive, first

verifying the origin of the file. The initial step in the code is

to check if the image file is located in Google Drive by

searching for the string '/content/drive/' in the file path. If

the image is not from this location, the code will terminate

the process and provide an error message. Once verification

is successful, the image is read using OpenCV, which by

default reads images in BGR (Blue-Green-Red) color

format. To be compatible with Matplotlib, the image is then

converted to RGB (Red-Green-Blue) color format, which is

more commonly used for visualization.

The next step in the code involves adjusting the contrast

and brightness of the image. These adjustments are

controlled through the variables alpha for contrast and beta

for brightness. The alpha value governs the level of

contrast, where a value of 1.0 maintains the original

contrast, while higher values enhance the contrast of the

image. Meanwhile, beta regulates the brightness, with

higher values making the image appear brighter. These

adjustments are applied to the image using the

`cv2.convertScaleAbs()` function. After adjusting the

contrast and brightness, the image is displayed using

Matplotlib with the display axes hidden to focus solely on

the image. Thus, this code enables users to read, verify,

adjust, and display images from Google Drive with easy

control over contrast and brightness.

2) DILATION ROW SEGMENTATION

Figure 5. Code Dilation Row Segmentation

After successfully displaying the image, it is processed in

the dilation stage. The code applies dilation to the binary

image, which is a technique in image processing used to

expand the area of bright objects in the image. Initially, a

kernel or structuring element of size 30x70 pixels is created

using `np.ones`, where each element has a value of 1. This

kernel functions as a "stamp" used in the dilation process.

Subsequently, the `cv2.dilate` function is applied to the

binary image (`binary`) with the kernel, and dilation is

performed once (as specified by `iterations = 1`). This

dilation makes the bright objects in the image thicker or

larger, which is useful for connecting separated elements,

such as text rows in document segmentation.

3) FINDING CONTOURS IN THE IMAGE

Figure 6.Code Finding Contours

The code above is used to find and sort contours in an

image that has undergone dilation. First, the

`cv2.findContours` function is employed to detect contours

in the segmented image (which has previously undergone

dilation). This function returns two values: `contours`,

which contains a list of all detected contours, and

`hierarchy`, which provides information about the

hierarchical relationships among the contours. The

parameter `cv2.RETR_EXTERNAL` ensures that only the

outermost contours are retrieved, while

`cv2.CHAIN_APPROX_NONE` retains all points in the

contours without approximation.

After the contours are detected, the code sorts them based

on their vertical position (y-coordinate) using the `sorted`

function. This sorting process is crucial in applications such

as text line segmentation, where the order of contours

determines the sequence of lines. The function

`cv2.boundingRect(ctr)` is used to obtain the coordinates

and dimensions of the bounding box for each contour, and

`key = lambda ctr: cv2.boundingRect(ctr)[1]` ensures that

the sorting is based on the y-value, which represents the

vertical position of the contours in the image.

4) SAVING AND DISPLAYING THE RESULTS OF ROW
SEGMENTATION IMAGES

Figure 7.Code For Saving And Displaying Image Results

This code is designed to draw bounding boxes around

each contour that has been previously sorted and then save

and display the resulting image. First, the code iterates

through each contour sorted by vertical position

(`sorted_contours_lines`). For each contour, the coordinates

of the top-left corner (`x, y`), as well as the width (`w`) and

height (`h`) of the bounding box, are calculated using

`cv2.boundingRect(ctr)`. The bounding box is then drawn

on the original image (`img2`) using `cv2.rectangle`, with

the box color specified by the RGB value `(40, 100, 250)`

and a line thickness of 2 pixels.

After all bounding boxes have been drawn, the resulting

image is saved to a file named segmentasi_baris.jpg using

cv2.imwrite. If the saving process fails, the program will

generate an error message. Finally, the image with

bounding boxes is displayed using Matplotlib (plt.imshow),

and the image is converted from the BGR color format

(used by OpenCV) to the RGB format for proper display.

Below is the result of the row segmentation stage.

 M. Fikri, et al.: Application of The Bounding Box… (Oktober 2024)

VOLUME06, No02, 2024 DOI:XXXXXXXXXX 5

Figure 8. Results Of The Row Segmentation Stage

C. CHARACTER SEGMENTATION USING BOUNDING
BOX

1) DILATION CHARACTER SEGMENTATION

Figure 9. Code Dilation Character Segmentation

After successfully processing the row segmentation

stage, the next step is to perform dilation on the characters

in the image. This code applies dilation to the image to

expand the character areas. First, a kernel of size 8x8 pixels

is created using `np.ones`, where each kernel element has a

value of 1. This kernel is used in the dilation process, where

the `cv2.dilate` function enlarges the white areas (bright

objects) in the binary image (`binary`). The dilation process

is performed once, as specified by `iterations = 1`. The

result of this dilation is an image with thicker characters

and more prominent white areas, which can aid in

connecting separated parts of characters or improving the

visibility of characters in the image.

2) FUNCTION TO MERGE TWO BOUNDING BOX

Figure 10. Code To Merge Two Bounding Boxes

This code defines a function named `merge_boxes` that

is used to combine two bounding boxes into a single, larger

box that encompasses both of the original boxes. The

function accepts two bounding boxes as input, each

represented by a tuple `(x, y, w, h)`, where `x` and `y` are

the coordinates of the top-left corner, and `w` and `h` are

the width and height of the box.

To merge two bounding boxes, the function first

determines the coordinates of the top-left corner of the

combined box by taking the minimum values of `x` and `y`

from the two boxes. Next, it determines the coordinates of

the bottom-right corner of the combined box by taking the

maximum values of `x + w` and `y + h` from both boxes.

Finally, the function returns the merged bounding box in

the form `(x1, y1, width, height)`, where `x1` and `y1` are

the coordinates of the top-left corner, and `width` and

`height` represent the width and height of the combined

box.

3) MORPHOLOGICAL OPERATIONS

Figure 11. Code Morphological Operations

This code employs morphological operations to merge

small contours with larger ones in a binary image. First, a

square-shaped kernel of size 8x8 pixels is created using

`cv2.getStructuringElement`. This kernel is used in the

morphological operation with the method

`cv2.MORPH_CLOSE`, which combines adjacent white

areas (bright objects) by closing small gaps between them.

This process is performed three times (`iterations=3`) to

ensure that small contours near larger contours are merged,

resulting in larger, more cohesive contours.

After the morphological operation is completed, the

contours in the modified image (`morphed`) are detected

using `cv2.findContours`. The function

`cv2.RETR_EXTERNAL` ensures that only the outer

contours are retrieved, while

`cv2.CHAIN_APPROX_SIMPLE` is used to simplify the

contours by reducing the number of points that make up

each contour. The result is a list of larger contours that are

combinations of previously separate small contours.

4) CONTOUR FILTERING ON THE IMAGE

Figure 12.Code Contour Filtering On The Image

This code is designed to filter out small contours in the

image, retaining only the larger contours. Initially, a

minimum contour area threshold is set with

`min_contour_area = 2`, meaning only contours with an

area greater than 2 pixels will be preserved. Subsequently,

contour filtering is performed by creating a new list,

`filtered_contours`, which includes only those contours

whose area exceeds this threshold. This filtering is

accomplished using list comprehension, with

 M. Fikri, et al.: Application of The Bounding Box… (Oktober 2024)

VOLUME06, No02, 2024 DOI:XXXXXXXXXX 6

`cv2.contourArea(cnt)` employed to calculate the area of

each contour.

After the smaller contours are removed, bounding boxes

for each of the remaining contours are computed and stored

in the list `bounding_boxes`. These bounding boxes are

calculated using `cv2.boundingRect(contour)`, which

provides the coordinates of the top-left corner, width, and

height of the bounding box surrounding each filtered

contour. As a result, this code prepares the data for the next

stage, where only the relevant and sufficiently large

contours will be further processed.

5) DETERMINING THE DISTANCE FOR MERGING

BOUNDING BOXES AND MARGIN

Figure 13.Code To Determine Distance And Margin

This code is designed to merge bounding boxes that are

close to each other into a single, larger box. First, the

maximum allowed distance for merging bounding boxes is

set with `max_distance = 50`. The code then processes each

bounding box individually using a `while` loop. For each

bounding box, the code searches for other bounding boxes

whose distance from the current bounding box does not

exceed `max_distance` in both horizontal and vertical

directions. All bounding boxes meeting this distance

criterion are collected in the list `to_merge`, and the merged

bounding boxes are removed from the list

`bounding_boxes`.

If there is more than one bounding box in the `to_merge`

list, they are merged into a single larger bounding box using

the `merge_boxes` function, and the result is stored in

`merged_boxes`. If there is only one bounding box in

`to_merge`, it is directly added to `merged_boxes`.

Additionally, the code sets an extra margin with a value of

`margin = 15` to provide spacing around the merged

bounding box. This ensures that the combined box covers a

sufficiently broad area around it.

6) SAVING AND DISPLAYING THE RESULTING IMAGE

Figure 14. Code Saving And Displaying The Resulting Image

This code is used to draw the merged bounding boxes on

the original image, and then save and display the result.

First, the code draws each bounding box listed in

`merged_boxes` on the original image (`img`). For each

bounding box, the coordinates and dimensions (`x, y, w, h`)

are extracted, and the bounding box is drawn around it with

an added margin on each side. This margin, set to `margin =

15`, ensures that the bounding box encompasses a

surrounding area around the merged bounding boxes.

After all the bounding boxes have been drawn, the image

with the bounding boxes is saved to a file named

`segmentasi_karakter.jpg` using `cv2.imwrite`. If the image

saving process fails, the code will output an error message.

Finally, the resulting image with bounding boxes is

displayed using Matplotlib. The displayed image is

converted from BGR to RGB format to ensure correct

visualization and is titled "Character Detection Results for

OKU East Script with Bounding Boxes" to provide context

for the visual results. Below is the image from the character

segmentation stage.

Figure 15. Image Result From The Character Segmentation Stage

Once the image has been successfully saved, the next

steps involve cropping and clustering. Subsequently, the

dataset created will be trained using a deep learning model,

enabling it to classify images in the future.

V. CONCLUSION

A. CONCLUSION

Based on the research conducted, a total of 1,020 images

were processed. These images were obtained from

completed and scanned questionnaires using a scanning

device. Subsequently, the images were processed during the

image preprocessing stage to enhance their quality before

 M. Fikri, et al.: Application of The Bounding Box… (Oktober 2024)

VOLUME06, No02, 2024 DOI:XXXXXXXXXX 7

undergoing image segmentation. This study employed the

Bounding Box method to process the OganKomeringUlu

(OKU) East script images obtained from the preprocessing

stage prior to entering the image segmentation process. This

method effectively assists in separating characters within

the respondent’s page images. By utilizing the Bounding

Box method, the segmented characters in the images can be

efficiently processed in the subsequent stages, namely

cropping and clustering.

B. SUGGESTION

Here are some suggestions to improve the segmentation

process: It is recommended to find additional code that

allows for batch input of images into the process. Currently,

images must be input one at a time, which is time-

consuming when dealing with a large number of images.

Implementing batch processing would significantly reduce

the time required for image input.

AUTHORS CONTRIBUTION

M. Fikri:Conceptualization, Methodology, Validation,

Investigation, Data Curation, Original Draft Preparation,

Visualization;

Ilman Zuhri Yadi:Conceptualization, Methodology,

Validation, Formal Analysis, Investigation, Data Curation,

Original Draft Preparation, Review and Editing,

Visualization, Supervision, Project Administration.

Yesi Novaria Kunang:Conceptualization, methodology,

validation, formal analysis, investigation, data curation,

original draft preparation, review and editing, visualization,

supervision, and project administration.

Leon Andretti Abdillah:Conceptualization, methodology,

validation, formal analysis, investigation, data curation,

original draft preparation, review and editing, visualization,

supervision, and project administration.

COPYRIGHT

This work is licensed under a Creative

Commons Attribution-NonCommercial-

ShareAlike 4.0 International License.

REFERENCES

[1] P. A. Setiyawan, A. A. K. A. C. W, and I. P. A.

Bayupati, “Balinese Alphabet Sebagai Aplikasi
Media Pembelajaran Aksara Bali Berbasis Android

Mobile Platform,” Merpati, vol. 2, no. 2, pp. 226–

237, 2014.

[2] R. Adipranata, J. Siwalankerto, and S. Telp,

“Kombinasi Metode Morphological Gradient Dan

Transformasi Watershed Pada Proses Segmentasi

Citra Digital,” J. Inform. Petra, no. 031, 2014.

[3] Z. Y. Malik Gumiwang, A. Haikal Nuqqy Zahhar,

and H. Maulana, “Perbandingan Segmentasi Citra

Menggunakan Algoritma K-Means Dan Algoritma

Fuzzy C-Means,” J. Manaj. Inform. Jayakarta, vol.

3, no. 1, pp. 21–26, 2023, [Online]. Available:
http://journal.stmikjayakarta.ac.id/index.php/JMIJa

yakarta

[4] N. L. Kartika Sari, P. Hartoyo, and A. Ajrun,

“Analisis Karakteristik Segmen Pada Citra

Mamografi Dengan Menggunakan Metode

Segmentasi Watershed,” J. Pembelajaran Fis., vol.

11, no. 2, p. 59, 2022, doi:

10.19184/jpf.v11i2.31643.

[5] F. Maedjaja and Efraim, “Sistem deteksi teks pada

cover buku dengan pendekatan karakter teks,”

Infact Ukrim, vol. 6, no. 2, 2021.

[6] R. Riandini and D. Kuncoro, “Estimasi Panjang
Antrean Kendaraan pada Persimpangan Jalan Raya

dengan Sensor Kamera Menggunakan Metode

Queue Length Estimation,” J. Comput. Eng.

Network, Intell. Multimed., vol. 1, no. 1, pp. 14–20,

2023, doi: 10.59378/jcenim.v1i1.4.

[7] V. M. Sutama, I. R. Magdalena, and I. Wijayanto,

“Identifikasi Objek Dominan Citra Digital

Menggunakan Metode Markov Random Field

(mrf),” eProceedings Eng., vol. 5, no. 3, pp. 4859–

4865, 2018, [Online]. Available:

https://openlibrarypublications.telkomuniversity.ac.
id/index.php/engineering/article/view/7839

[8] M. D. Hamanrora, Y. N. Kunang, I. Z. Yadi, and

Mahmud, “Image segmentation of Komering script

using bounding box,” Indones. J. Electr. Eng.

Comput. Sci., vol. 35, no. 3, pp. 1565–1578, 2024,

doi: 10.11591/ijeecs.v35.i3.pp1565-1578.

[9] I. Boyke Nainggolan, I. Rita Magdalena, and R.

Yunendah Nur Fu, “Matched Filter Dan Operasi

Morfologi Untuk Estimasi Derajat Kebengkokan

Tulang Matched Filters and Morphological

Operations for Estimating Design of Bone Grass,”

vol. 5, no. 3, p. 5108, 2018.
[10] A. Septiarini, K. Kunci, and P. Proyeksi,

“Segmentasi Karakter Menggunakan Profil

Proyeksi,” J. Inform. Mulawarman Ed. Juli, vol. 7,

no. 2, pp. 66–69, 2012.

https://creativecommons.org/licenses/by-nc-sa/4.0/

	4a9509d8dd5a4da2720cea40c1c6f17d1d5cc661e5f9f5335db84d479e01d6fe.pdf
	Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000
	1) DISPLAYING EAST OKU SCRIPT IMAGES
	2) DILATION ROW SEGMENTATION
	3) FINDING CONTOURS IN THE IMAGE
	4) SAVING AND DISPLAYING THE RESULTS OF ROW SEGMENTATION IMAGES
	1) DILATION CHARACTER SEGMENTATION

	4a9509d8dd5a4da2720cea40c1c6f17d1d5cc661e5f9f5335db84d479e01d6fe.pdf

